Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 42

Answer

$$ \frac{-1}{27} $$ $$y=\frac{-x}{27}+\frac{13}{27}$$

Work Step by Step

Since $$ f(x)= \frac{1}{\sqrt{2x+1}} ,\ \ a= 4 $$ Then \begin{aligned} f^{\prime}(4)&=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{2 h+9}}-\frac{1}{3}}{h}\\ &=\lim _{h \rightarrow 0} \frac{3-\sqrt{2 h+9}}{3 h \sqrt{2 h+9}}\\ &=\lim _{h \rightarrow 0} \frac{3-\sqrt{2 h+9}}{3 h \sqrt{2 h+9}} \times \frac{3+\sqrt{2 h+9}}{3+\sqrt{2 h+9}}\\ &=\lim _{h \rightarrow 0} \frac{9-2 h-9}{3 h \sqrt{2 h+9}(3+\sqrt{2 h+9})}\\ &=\lim _{h \rightarrow 0} \frac{-2}{3 \sqrt{2 h+9}(3+\sqrt{2 h+9})}\\ &=\frac{-1}{27} \end{aligned} and the tangent line is \begin{aligned} y-\frac{1}{3}&=-\frac{1}{27}(x-4)\\ y&=\frac{1}{3}-\frac{1}{27} x+\frac{4}{27}\\ y&=-\frac{1}{27} x+\frac{13}{27}\\ y&=\frac{-x+13}{27}\\ y&=\frac{-x}{27}+\frac{13}{27}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.