Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 46

Answer

$$-3$$ $$y=-3 x+4$$

Work Step by Step

Since \begin{aligned} f^{\prime}(1)&=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h^{3}+3 h+3 h^{2}}-1}{h}\\ &=\lim _{h \rightarrow 0} \frac{1-1-h^{3}-3 h-3 h^{2}}{h\left(1+h^{3}+3 h+3 h^{2}\right)}\\ &=\lim _{h \rightarrow 0} \frac{-h^{3}-3 h-3 h^{2}}{h\left(1+h^{3}+3 h+3 h^{2}\right)}\\ &=\lim _{h \rightarrow 0} \frac{-h^{2}-3-3 h}{1+h^{3}+3 h+3 h^{2}}\\ &=-3 \end{aligned} Thus at $a=1,$ the equation of the tangent line is $y-f(1)=f^{\prime}(1)(x-1)$ \begin{align*} y-1&=-3(x-1)\\ y&=1-3 x+3\\ y&=-3 x+4 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.