Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 39

Answer

$$\frac{1}{2 \sqrt{5}}$$ $$y=\frac{1}{2 \sqrt{5}} x+\frac{9}{2 \sqrt{5}}$$

Work Step by Step

Let $f(x)=\sqrt{x+4}$. Then \begin{aligned} f^{\prime}(1) &=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\sqrt{h+5}-\sqrt{5}}{h}\\ &=\lim _{h \rightarrow 0} \frac{\sqrt{h+5}-\sqrt{5}}{h} \cdot \frac{\sqrt{h+5}+\sqrt{5}}{\sqrt{h+5}+\sqrt{5}} \\ &=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{h+5}+\sqrt{5})}\\ &=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+5}+\sqrt{5}}=\frac{1}{2 \sqrt{5}} \end{aligned} The tangent line at $a=1$ is \begin{aligned} y&=f^{\prime}(1)(x-1)+f(1)\\ &=\frac{1}{2 \sqrt{5}}(x-1)+\sqrt{5}\\ &=\frac{1}{2 \sqrt{5}} x+\frac{9}{2 \sqrt{5}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.