Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 43

Answer

$$\frac{3}{\sqrt{10}}$$ $$y=\frac{3}{\sqrt{10}} t+\frac{1}{\sqrt{10}}$$

Work Step by Step

Let $f(t)=\sqrt{t^{2}+1} .$ Then \begin{aligned} f^{\prime}(3) &=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\sqrt{10+6 h+h^{2}}-\sqrt{10}}{h} \\ &=\lim _{h \rightarrow 0} \frac{\sqrt{10+6 h+h^{2}}-\sqrt{10}}{h} \cdot \frac{\sqrt{10+6 h+h^{2}}+\sqrt{10}}{\sqrt{10+6 h+h^{2}}+\sqrt{10}} \\ &=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h(\sqrt{10+6 h+h^{2}}+\sqrt{10})}\\ &=\lim _{h \rightarrow 0} \frac{6+h}{\sqrt{10+6 h+h^{2}}+\sqrt{10}}=\frac{3}{\sqrt{10}} \end{aligned} The tangent line at $a=3$ is \begin{aligned} y&=f^{\prime}(3)(t-3)+f(3)\\ &=\frac{3}{\sqrt{10}}(t-3)+\sqrt{10}\\ &=\frac{3}{\sqrt{10}} t+\frac{1}{\sqrt{10}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.