Answer
$\displaystyle \frac{3xy-3y}{x}$
Work Step by Step
Brackets firdt, the common denominator is y...
$=\displaystyle \frac{y^{2}}{x}\cdot\frac{2x-3+x}{y}=\frac{y^{2}}{x}\cdot\frac{3x-3}{y}$
Multiplying fractions:
$=\displaystyle \frac{y^{2}\cdot(3x-3)}{x\cdot y}$
reduce the fraction with y
$=\displaystyle \frac{y(3x-3)}{x}$
$=\displaystyle \frac{3xy-3y}{x}$