Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.4 - Rational Expressions - Exercises - Page 23: 4

Answer

$$\frac{{3{x^2} - 9}}{{{x^2} - x + 2}}$$

Work Step by Step

$$\eqalign{ & \frac{{2x - 3}}{{x - 2}} + \frac{{x + 3}}{{x + 1}} \cr & {\text{The LCD is }}\left( {x - 2} \right)\left( {x - 1} \right),{\text{ then}} \cr & = \frac{{\left( {2x - 3} \right)\left( {x + 1} \right)}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} + \frac{{\left( {x + 3} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \cr & {\text{Sum}} \cr & = \frac{{\left( {2x - 3} \right)\left( {x + 1} \right) + \left( {x + 3} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \cr & {\text{Multiply and simplify}} \cr & = \frac{{2{x^2} + 2x - 3x - 3 + {x^2} - 2x + 3x - 6}}{{{x^2} + x - 2x + 2}} \cr & = \frac{{3{x^2} - 9}}{{{x^2} - x + 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.