Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.4 - Rational Expressions - Exercises - Page 23: 14

Answer

$$ - \frac{{2{x^4} + x}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }}$$

Work Step by Step

$$\eqalign{ & \frac{{x\sqrt {{x^3} - 1} - \frac{{3{x^4}}}{{\sqrt {{x^3} - 1} }}}}{{{x^3} - 1}} \cr & {\text{Multiply the numerator and denominator by }}\sqrt {{x^3} - 1} \cr & = \frac{{x{{\left( {\sqrt {{x^3} - 1} } \right)}^2} - \frac{{3{x^4}\sqrt {{x^3} - 1} }}{{\sqrt {{x^3} - 1} }}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} \cr & = \frac{{x\left( {{x^3} - 1} \right) - 3{x^4}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} \cr & = \frac{{{x^4} - x - 3{x^4}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} \cr & = \frac{{ - x - 2{x^4}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} \cr & = - \frac{{2{x^4} + x}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.