Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.4 - Rational Expressions - Exercises - Page 23: 12

Answer

$$\frac{{{\text{3}}x{{\left( {{x^2} + 1} \right)}^2}\left( {4 - {x^3} - 3x} \right)}}{{{{\left( {{x^3} + 2} \right)}^4}}}$$

Work Step by Step

$$\eqalign{ & \frac{{6x{{\left( {{x^2} + 1} \right)}^2}{{\left( {{x^3} + 2} \right)}^3} - 9{x^2}{{\left( {{x^2} + 1} \right)}^3}{{\left( {{x^3} + 2} \right)}^2}}}{{{{\left( {{x^3} + 2} \right)}^6}}} \cr & {\text{Divide the numerator and denominator by }}{\left( {{x^3} + 2} \right)^2} \cr & = \frac{{\frac{{6x{{\left( {{x^2} + 1} \right)}^2}{{\left( {{x^3} + 2} \right)}^3}}}{{{{\left( {{x^3} + 2} \right)}^2}}} - \frac{{9{x^2}{{\left( {{x^2} + 1} \right)}^3}{{\left( {{x^3} + 2} \right)}^2}}}{{{{\left( {{x^3} + 2} \right)}^2}}}}}{{\frac{{{{\left( {{x^3} + 2} \right)}^6}}}{{{{\left( {{x^3} + 2} \right)}^2}}}}} \cr & = \frac{{6x{{\left( {{x^2} + 1} \right)}^2}\left( {{x^3} + 2} \right) - 9{x^2}{{\left( {{x^2} + 1} \right)}^3}}}{{{{\left( {{x^3} + 2} \right)}^4}}} \cr & {\text{Factor the numerator, the LCD is 3}}x{\left( {{x^2} + 1} \right)^2} \cr & = \frac{{{\text{3}}x{{\left( {{x^2} + 1} \right)}^2}\left[ {2\left( {{x^3} + 2} \right) - 3x\left( {{x^2} + 1} \right)} \right]}}{{{{\left( {{x^3} + 2} \right)}^4}}} \cr & {\text{Simplify}} \cr & = \frac{{{\text{3}}x{{\left( {{x^2} + 1} \right)}^2}\left( {2{x^3} + 4 - 3{x^3} - 3x} \right)}}{{{{\left( {{x^3} + 2} \right)}^4}}} \cr & = \frac{{{\text{3}}x{{\left( {{x^2} + 1} \right)}^2}\left( {4 - {x^3} - 3x} \right)}}{{{{\left( {{x^3} + 2} \right)}^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.