Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.3 - Trigonometric Functions - Exercises 1.3 - Page 28: 34

Answer

$ \sin{\left(x-\dfrac{\pi}{2} \right)} = -\cos{x}= \text{ RHS}$

Work Step by Step

Addition formula $$\sin{(A+B)}= \sin{A} \cos{B} +\cos{A} \sin{B}$$ $\therefore \sin{\left(x-\dfrac{\pi}{2} \right)} = \sin{x} \cos{\left(-\dfrac{\pi}{2} \right)} + \cos{x} \sin{\left(-\dfrac{\pi}{2}\right)}$ $ \sin{\left(x-\dfrac{\pi}{2} \right)} = \sin{x} \cos{\left(\dfrac{\pi}{2} \right)} + \cos{x} (- \sin{\left(-\dfrac{\pi}{2}\right)})$ $ \sin{\left(x-\dfrac{\pi}{2} \right)} = \sin{x} \times (0) + \cos{x} \times (-1)$ $ \sin{\left(x-\dfrac{\pi}{2} \right)} = -\cos{x}= \text{ RHS}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.