Answer
$\cos{(A-B)} = \cos{A} \cos{B} + \sin{A} \sin{B} = \text{ RHS}$
Work Step by Step
Addition formula
$$\cos{(A+B)}= \cos{A} \cos{B}-\sin{A}\sin{B}$$
$\therefore \cos{(A-B)} = \cos{A} \cos{(-B)} - \sin{A} \sin{(-B)}$
$\cos{(A-B)} = \cos{A} \cos{B} - \sin{A} (-\sin{B})$
$\cos{(A-B)} = \cos{A} \cos{B} + \sin{A} \sin{B} = \text{ RHS}$