Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.3 - Trigonometric Functions - Exercises 1.3 - Page 28: 58

Answer

See the step-by-step proof below.

Work Step by Step

Apply the identity given in the problem: $ sin(A+B)=cos(\frac{\pi}{2}-A-B)=cos((\frac{\pi}{2}-A)-B)$ Here we use the formula: $ cos(A'-B)=cosA'cosB+sinA'sinB $ We let $ A'=\frac{\pi}{2}-A $ and the above becomes: $ sin(A+B)=cos((\frac{\pi}{2}-A)-B)=cos(\frac{\pi}{2}-A)cosB+sin(\frac{\pi}{2}-A)sinB=sinAcosB+cosAsinB $ Hence: $ sin(A+B)=sinAcosB+cosAsinB $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.