Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.3 - Trigonometric Functions - Exercises 1.3 - Page 28: 45

Answer

$\dfrac{\sqrt{6}+\sqrt{2}}{4}$

Work Step by Step

Addition formula $$\cos{(A+B)}= \cos{A} \cos{B}-\sin{A}\sin{B}$$ $ \cos{\left(\dfrac{\pi}{12} \right)} = \cos{\left(\dfrac{\pi}{3} -\dfrac{\pi}{4} \right)}$ $\cos{\left(\dfrac{\pi}{3} -\dfrac{\pi}{4} \right)} = \cos{\left(\dfrac{\pi}{3} \right)} \cos{\left(-\dfrac{\pi}{4} \right)} - \sin{\left(\dfrac{\pi}{3} \right)} \sin{\left(-\dfrac{\pi}{4} \right)}$ $\cos{\left(\dfrac{\pi}{12} \right)} = \dfrac{1}{2} \times \dfrac{\sqrt{2}}{2} + \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{2}}{2}$ $\cos{\left(\dfrac{\pi}{12} \right)} = \dfrac{\sqrt{6}+\sqrt{2}}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.