Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.3 - Trigonometric Functions - Exercises 1.3 - Page 28: 38

Answer

The results agree with the fact that the cosine and sine functions are periodic with a period of $2\pi$

Work Step by Step

Addition formulas $$\cos{(A+B)}= \cos{A} \cos{B}-\sin{A}\sin{B}$$ $$\sin{(A+B)}= \sin{A} \cos{B} +\cos{A} \sin{B}$$ $\cos{(A+2\pi)} = \cos{A} \cos{2\pi} -\sin{A} \sin{2\pi}$ $\cos{(A+2\pi)} = \cos{A} \times (1) - \sin{A} \times (0)$ $\cos{(A+2\pi)} = \cos{A}$ $\sin{(A+2\pi)} = \sin{A} \cos{2\pi} + \cos{A} \sin{2\pi}$ $\sin{(A+2\pi)} = \sin{A} \times (1) + \cos{A} \times (0)$ $\sin{(A+2\pi)} = \sin{A} $ The results agree with the fact that the cosine and sine functions are periodic with a period of $2\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.