Answer
$||v||=3.54$.
\begin{bmatrix}
\frac{3.2}{3.54} \\
\frac{-0.6}{3.54} \\
\frac{-1.4}{3.54} \\
\end{bmatrix}
Work Step by Step
I know that for the vector $v=\begin{bmatrix}
v_{1} \\
v_{2} \\
\vdots\\
v_{n}
\end{bmatrix}$
$||v||=\sqrt{v_1^2+v_2^2+...+v_n^2}$
The unit vector in the direction of $v$ is $\frac{v}{||v||}$.
Hence: $||v||=\sqrt{3.2^2+(-0.6)^2+(-1.4)^2}=\sqrt{10.24+0.36+1.96}=\sqrt{12.56}\approx3.54$.
Thus, the unit vector in the direction of $v$ is: \begin{bmatrix}
\frac{3.2}{3.54} \\
\frac{-0.6}{3.54} \\
\frac{-1.4}{3.54} \\
\end{bmatrix}