Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 1 - Vectors - 1.2 Length and Angle: The Dot Product - Exercises 1.2 - Page 290: 22

Answer

Obtuse

Work Step by Step

We know the following: $\cos\theta=\frac{u\cdot v}{|u||v|}$ Therefore, it follows: $u\cdot v=1(-3)+(2)(1)+3(2)+4(-2)=-3$ $|u|=\sqrt{((1)^2+(2)^2+(3)^2+(4)^2)}=\sqrt{30}$ $|v|=\sqrt{((-3)^2+1^2+2^2+(-2)^2)}=\sqrt{18}=3\sqrt{2}$ So: $\cos\theta=\frac{u.v}{|u||v|}=\frac{-3}{\sqrt{30}\sqrt{2}\times3}$ The value of $\cos\theta$ is between -1 and 0, so it is an obtuse angle.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.