Answer
$2$
Work Step by Step
For the matrices $u=\begin{bmatrix}
u_{1} \\
u_{2} \\
\vdots\\
u_{n}
\end{bmatrix}$
and $v=\begin{bmatrix}
v_{1} \\
v_{2} \\
\vdots\\
v_{n}
\end{bmatrix}$
The dot product is: $u\cdot v=u_1\cdot v_1+u_2\cdot v_2+...+u_n\cdot v_n.$
Hence: $u\cdot v=1\cdot 4+\sqrt2\cdot (-\sqrt2)+\sqrt3\cdot 0=4+(-2)+0=2.$