Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 1 - Vectors - 1.2 Length and Angle: The Dot Product - Exercises 1.2 - Page 290: 11

Answer

$||v||=\sqrt{6}$. \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{\sqrt{3}}{\sqrt{6}} \\ \frac{0}{\sqrt{6}} \\ \end{bmatrix}

Work Step by Step

I know that for the vector $v=\begin{bmatrix} v_{1} \\ v_{2} \\ \vdots\\ v_{n} \end{bmatrix}$ $||v||=\sqrt{v_1^2+v_2^2+...+v_n^2}$ The unit vector in the direction of $v$ is $\frac{v}{||v||}$. Hence: $||v||=\sqrt{1^2+\sqrt2^2+\sqrt3^2+0^2}=\sqrt{1+2+3+0}=\sqrt{6}$. Thus, the unit vector in the direction of $v$ is: \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{\sqrt{3}}{\sqrt{6}} \\ \frac{0}{\sqrt{6}} \\ \end{bmatrix}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.