Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 87: 117

Answer

The required solution is $\frac{1}{{{x}^{2n}}-1}$

Work Step by Step

We have the given rational expression: $\frac{1}{{{x}^{n}}-1}-\frac{1}{{{x}^{n}}+1}-\frac{1}{{{x}^{2n}}-1}$ Now, simplify the third part of the given expression: $\begin{align} & \frac{1}{{{x}^{2n}}-1}=\frac{1}{{{\left( {{x}^{n}} \right)}^{2}}-{{\left( 1 \right)}^{2}}} \\ & =\frac{1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)} \end{align}$ So, the given expression becomes: $\frac{1}{{{x}^{n}}-1}-\frac{1}{{{x}^{n}}+1}-\frac{1}{{{x}^{2n}}-1}=\frac{1}{{{x}^{n}}-1}-\frac{1}{{{x}^{n}}+1}-\frac{1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)}$ And simplify the above expression: $\begin{align} & \frac{1}{{{x}^{n}}-1}-\frac{1}{{{x}^{n}}+1}-\frac{1}{{{x}^{2n}}-1}=\frac{1}{\left( {{x}^{n}}-1 \right)}\times \frac{\left( {{x}^{n}}+1 \right)}{\left( {{x}^{n}}+1 \right)}-\frac{1}{\left( {{x}^{n}}+1 \right)}\times \frac{\left( {{x}^{n}}-1 \right)}{\left( {{x}^{n}}-1 \right)}-\frac{1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)} \\ & =\frac{\left( {{x}^{n}}+1 \right)}{\left( {{x}^{n}}-1 \right)\left( {{x}^{n}}+1 \right)}-\frac{\left( {{x}^{n}}-1 \right)}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)}-\frac{1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)} \\ & =\frac{{{x}^{n}}+1-{{x}^{n}}+1-1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)} \\ & =\frac{1}{\left( {{x}^{n}}+1 \right)\left( {{x}^{n}}-1 \right)} \end{align}$ Hence, $\frac{1}{{{x}^{n}}-1}-\frac{1}{{{x}^{n}}+1}-\frac{1}{{{x}^{2n}}-1}=$ $\frac{1}{{{x}^{2n}}-1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.