Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 87: 118

Answer

The required solution is $\frac{x-1}{x+3}$

Work Step by Step

We have the given rational expression: $\left( 1-\frac{1}{x} \right)\left( 1-\frac{1}{x+1} \right)\left( 1-\frac{1}{x+2} \right)\left( 1-\frac{1}{x+3} \right)$ Solve the first bracket of the given expression: $\begin{align} & 1-\frac{1}{x}=1\times \frac{x}{x}-\frac{1}{x} \\ & =\frac{x}{x}-\frac{1}{x} \\ & =\frac{x-1}{x} \end{align}$ Also, solve the second bracket of the given expression: $\begin{align} & 1-\frac{1}{x+1}=1\times \frac{\left( x+1 \right)}{\left( x+1 \right)}-\frac{1}{x+1} \\ & =\frac{x+1}{x+1}-\frac{1}{x+1} \\ & =\frac{x+1-1}{x+1} \\ & =\frac{x}{x+1} \end{align}$ Solve the third bracket of the given expression: $\begin{align} & 1-\frac{1}{x+2}=1\times \frac{\left( x+2 \right)}{\left( x+2 \right)}-\frac{1}{x+2} \\ & =\frac{x+2}{x+2}-\frac{1}{x+2} \\ & =\frac{x+2-1}{x+2} \\ & =\frac{x+1}{x+2} \end{align}$ And solve the fourth bracket of the given expression: $\begin{align} & 1-\frac{1}{x+3}=1\times \frac{\left( x+3 \right)}{\left( x+3 \right)}-\frac{1}{x+3} \\ & =\frac{x+3}{x+3}-\frac{1}{x+3} \\ & =\frac{x+3-1}{x+3} \\ & =\frac{x+2}{x+3} \end{align}$ Simplifying the given rational expression: $\begin{align} & \left( 1-\frac{1}{x} \right)\left( 1-\frac{1}{x+1} \right)\left( 1-\frac{1}{x+2} \right)\left( 1-\frac{1}{x+3} \right)=\left( \frac{x-1}{x} \right)\left( \frac{x}{x+1} \right)\left( \frac{x+1}{x+2} \right)\left( \frac{x+2}{x+3} \right) \\ & =\frac{x-1}{x+3} \end{align}$ Hence, $\left( 1-\frac{1}{x} \right)\left( 1-\frac{1}{x+1} \right)\left( 1-\frac{1}{x+2} \right)\left( 1-\frac{1}{x+3} \right)=$ $\frac{x-1}{x+3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.