Answer
$\dfrac{-3+5i}{15i}=\dfrac{1}{3}+\dfrac{1}{5}i$
Work Step by Step
$\dfrac{-3+5i}{15i}$
Multiply the fraction by $\dfrac{-15i}{-15i}$:
$\Big(\dfrac{-3+5i}{15i}\Big)\Big(\dfrac{-15i}{-15i}\Big)=\dfrac{45i-75i^{2}}{-225i^{2}}=...$
Substitute $i^{2}$ with $-1$:
$...=\dfrac{-75(-1)+45i}{-225(-1)}=\dfrac{75+45i}{225}=\dfrac{75}{225}+\dfrac{45}{225}i=\dfrac{1}{3}+\dfrac{1}{5}i$