Answer
$z=a+bi$
So, $z\times\frac{}{z}=a^{2}+b^{2}$ is a real number
Work Step by Step
$z=a+bi$
Find the conjugate of the complex numbers by changing the sign of their imaginary part:
$\frac{}{z}=a-bi$
$z\times\frac{}{z}=(a+bi)+(a-bi)=a^{2}-(bi)^{2}$
We have: $i^{2}=-1$, So $z\times\frac{}{z}= a^{2}-b^{2}\times(-1)=a^{2}+b^{2}$
Therefore, $z\times\frac{}{z}$ is a real number