Answer
$\overline{z+w}=8+2i$
Work Step by Step
$z=3-4i$ $;$ $w=5+2i$
$\overline{z+w}$
Evaluate $z+w$:
$z+w=(3-4i)+(5+2i)=(3+5)+(-4+2)i=8-2i$
Find the conjugate by changing the sign of the imaginary part of the complex number:
$\overline{z+w}=8+2i$