Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.6 - Complex Numbers - 1.6 Exercises - Page 64: 51

Answer

1

Work Step by Step

$i^{1000}$ Break it down into $(i^{2})^{x}$ since $(i^{2} = -1)$ we start with $(-1)*i^{500}$ $(-1)*i^{500}$ $(-1)(-1)*i^{250}$ $(-1)(-1)(-1)*i^{125}$ now 125 is not divisible by 2 so lets set aside an i and make it $(i*i^{124})$ $i*(-1)(-1)(-1)*i^{124}$ $i*(-1)(-1)(-1)(-1)*i^{62}$ $i*(-1)(-1)(-1)(-1)(-1)*i^{31}$ $i*i*(-1)(-1)(-1)(-1)(-1)*i^{30}$ $i*i*(-1)(-1)(-1)(-1)(-1)(-1)*i^{15}$ $i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)*i^{15}$ $i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)*i^{14}$ $i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)(-1)*i^{7}$ $i*i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)(-1)*i^{6}$ $i*i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)*i^{3}$ $i*i*i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)*i^{2}$ $i*i*i*i*i*i*(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)$ Remember (i*i) = (-1) so we can combine the remaining i's $(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)$ Then combined the (-1)'s and you end up with the answer of positive 1.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.