An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.3 The Probability Function - Questions - Page 31: 12

Answer

\[{{p}_{2}}=\frac{5}{8}\]

Work Step by Step

${{A}_{1}}$ and ${{A}_{2}}$ exist such that ${{A}_{1}}\cup {{A}_{2}}=S$ and ${{A}_{1}}\cap {{A}_{2}}=\varnothing $ \[\begin{align} & P({{A}_{1}})={{p}_{1}} \\ & P({{A}_{2}})={{p}_{2}} \\ & 3{{p}_{1}}-{{p}_{2}}=\frac{1}{2} \\ \end{align}\] We know that, \[\begin{align} & P({{A}_{1}})+P({{A}_{2}})=P(S) \\ & {{p}_{1}}+{{p}_{2}}=1 \\ \end{align}\] So, put\[{{p}_{1}}=1-{{p}_{2}}\] in the equation \[3{{p}_{1}}-{{p}_{2}}=\frac{1}{2}\] we get \[\begin{align} & \frac{1}{2}=3(1-{{p}_{2}})-{{p}_{2}} \\ & \frac{1}{2}=3-3{{p}_{2}}-{{p}_{2}} \\ & \frac{1}{2}=3-4{{p}_{2}} \\ & {{p}_{2}}=\frac{5}{8} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.