An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.3 The Probability Function - Questions - Page 31: 5

Answer

It is not verified that \[P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=\frac{1}{2}\].

Work Step by Step

Suppose that three fair dice are tossed. Let ${{A}_{i}}$ be the event that a 6 shows on the i th die, i = 1, 2, 3. Hence, \[\begin{align} & P({{A}_{1}})=\frac{1}{6} \\ & P({{A}_{2}})=\frac{1}{6} \\ & P({{A}_{3}})=\frac{1}{6} \\ \end{align}\] Consider, \[\begin{align} & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=P(Atleast\text{ one 6 appears}) \\ & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=1-P(no\text{ 6 appears}) \\ & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=1-\frac{5}{6}\times \frac{5}{6}\times \frac{5}{6} \\ & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=1-\frac{125}{216} \\ & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=\frac{216-125}{216} \\ & P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=\frac{91}{216} \\ \end{align}\] Since, we see that \[P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})=\frac{91}{216}\ne \frac{1}{2}\] Therefore, we can say that ${{A}_{1}},\text{ }{{A}_{2}}\text{ and }{{A}_{3}}$are not mutually exclusive events, so \[P({{A}_{1}}\cup {{A}_{2}}\cup {{A}_{3}})\ne P({{A}_{1}})+P({{A}_{2}})+P({{A}_{3}})\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.