An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.3 The Probability Function - Questions - Page 31: 6

Answer

The probability that either A or B but not both will occur is 0.3.

Work Step by Step

Let A and B be any two events defined on S such that, \[\begin{align} & P{{(A\cup B)}^{C}})=0.5 \\ & P(A\cap B)=0.2 \\ \end{align}\] By DeMorgan’s law, \[\begin{align} & P{{(A\cup B)}^{C}}=1-P(A\cup B) \\ & P(A\cup B)=1-P{{(A\cup B)}^{C}} \\ & P(A\cup B)=1-0.5 \\ & P(A\cup B)=0.5 \\ \end{align}\] We have to find the probability that either A or B but not both will occur; that means to find \[P((A\cup B)\cap {{(A\cap B)}^{C}})\]as: \[\begin{align} & P((A\cup B)\cap {{(A\cap B)}^{C}})=P(A\cup {{B}^{C}})+P(B\cap {{A}^{C}}) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=P(A)+P(B)-2P(A\cap B) \\ \end{align}\] Since, \[\begin{align} & P(A\cup B)=P(A)+P(B)-P(A\cap B) \\ & 0.5=P(A)+P(B)-0.2 \\ & P(A)+P(B)=0.7 \\ \end{align}\] Therefore, \[\begin{align} & P((A\cup B)\cap {{(A\cap B)}^{C}})=P(A)+P(B)-2P(A\cap B) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=0.7-2(0.2) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=0.3 \\ \end{align}\] The probability that either A or B but not both will occur is 0.3.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.