An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.3 The Probability Function - Questions - Page 31: 16

Answer

\[P(A\cap {{B}^{C}})=\frac{1}{12}\]

Work Step by Step

Two dice are tossed, so there are 36 possible outcomes in sample space S: \[S=\{(1,1),\text{ (1,2),}.................\text{,(6,6)}\}\] Let A be the event that the sum of the faces showing is 6,and let B be the event that the face showing on one die is twice the face showing on the other. Hence, the possible outcomes of events A and B are: $A=\left\{ \left( 1,5 \right),\text{ }\left( 5,1 \right),\text{ }\left( 2,4 \right),\text{ }\left( 4,2 \right),\text{ }\left( 3,3 \right) \right\}$ $B=\left\{ \left( 1,2 \right),\text{ }\left( 2,1 \right),\text{ }\left( 2,4 \right),\text{ }\left( 4,2 \right),\text{ }\left( 3,6 \right),\left( 6,3 \right) \right\}$ Assume that each possible outcome has a probability \[{}^{1}/{}_{36}\] Since, there are 5 possible outcomes for A and 6 for B, their probabilities would be \[\begin{align} & P(A)=\frac{5}{36} \\ & P(B)=\frac{6}{36} \\ \end{align}\] We know that \[P(A\cap {{B}^{C}})=P(A)-P(A\cap B)\] For this we want to find \[P(A\cap B)\]as: \[\begin{align} & (A\cap B)=\{\left( 2,4 \right),\text{ }\left( 4,2 \right)\} \\ & P(A\cap B)=\frac{2}{36} \\ \end{align}\] Therefore, \[\begin{align} & P(A\cap {{B}^{C}})=P(A)-P(A\cap B) \\ & P(A\cap {{B}^{C}})=\frac{5}{36}-\frac{2}{36} \\ & P(A\cap {{B}^{C}})=\frac{3}{36} \\ & P(A\cap {{B}^{C}})=\frac{1}{12} \\ \end{align}\] The required probability is \[\frac{1}{12}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.