Answer
The probability that the number on the first die was at least as large as 4 given that the sum of the two dice was 8 is 3/5.
Work Step by Step
We express two die being tossed as:
$S=\left\{ \begin{align}
& \left( 1,\text{ }1 \right)\text{ }\left( 1,\text{ }2 \right)\text{ }\left( 1,\text{ }3 \right)\text{ }\left( 1,\text{ }4 \right)\text{ }\left( 1,\text{ }5 \right)\text{ }\left( 1,\text{ }6 \right)\text{ } \\
& \left( 2,\text{ }1 \right)\text{ }\left( 2,\text{ }2 \right)\text{ }\left( 2,\text{ }3 \right)\text{ }\left( 2,\text{ }4 \right)\text{ }\left( 2,\text{ }5 \right)\text{ }\left( 2,\text{ }6 \right)\text{ } \\
& \left( 3,\text{ }1 \right)\text{ }\left( 3,\text{ }2 \right)\text{ }\left( 3,\text{ }3 \right)\text{ }\left( 3,\text{ }4 \right)\text{ }\left( 3,\text{ }5 \right)\text{ }\left( 3,\text{ }6 \right)\text{ } \\
& \left( 4,\text{ }1 \right)\text{ }\left( 4,\text{ }2 \right)\text{ }\left( 4,\text{ }3 \right)\text{ }\left( 4,\text{ }4 \right)\text{ }\left( 4,\text{ }5 \right)\text{ }\left( 4,\text{ }6 \right)\text{ } \\
& \left( 5,\text{ }1 \right)\text{ }\left( 5,\text{ }2 \right)\text{ }\left( 5,\text{ }3 \right)\text{ }\left( 5,\text{ }4 \right)\text{ }\left( 5,\text{ }5 \right)\text{ }\left( 5,\text{ }6 \right)\text{ } \\
& \left( 6,\text{ }1 \right)\text{ }\left( 6,\text{ }2 \right)\text{ }\left( 6,\text{ }3 \right)\text{ }\left( 6,\text{ }4 \right)\text{ }\left( 6,\text{ }5 \right)\text{ }\left( 6,\text{ }6 \right) \\
\end{align} \right\}$
Let A be the event that the number on the first die was at least as large as 4 and B be the even that the sum of the two dice was 8.
We see that 15 of the sample outcomes in S constitute the event A:
$A=\left\{ \begin{align}
& \left( 4,\text{ }4 \right)\text{ }\left( 4,\text{ }5 \right)\text{ }\left( 4,\text{ }6 \right)\text{ }\left( 5,\text{ }1 \right)\text{ }\left( 5,\text{ }2 \right)\text{ } \\
& \left( 5,\text{ }3 \right)\text{ }\left( 5,\text{ }4 \right)\text{ }\left( 5,\text{ }5 \right)\text{ }\left( 5,\text{ }6 \right)\text{ }\left( 6,\text{ }1 \right)\text{ } \\
& \left( 6,\text{ }2 \right)\text{ }\left( 6,\text{ }3 \right)\text{ }\left( 6,\text{ }4 \right)\text{ }\left( 6,\text{ }5 \right)\text{ }\left( 6,\text{ }6 \right) \\
\end{align} \right\}$
\[P(A)=\frac{15}{36}\]
We see that 5 of the sample outcomes in S constitute the event B:
$B=\{\left( 2,\text{ }6 \right)\text{ }\left( 3,\text{ }5 \right)\text{ }\left( 4,\text{ }4 \right)\text{ }\left( 5,\text{ }3 \right)\text{ }\left( 6,\text{ }2 \right)\}$
\[P(B)=\frac{5}{36}\]
$A\cap B=\{\left( 4,\text{ }4 \right)\text{ }\left( 5,\text{ }3 \right)\text{ }\left( 6,\text{ }2 \right)\}$
\[P(A\cap B)=\frac{3}{36}\]
We have to find the probability of that the number on the first die was at least as large as 4 given that the sum of the two dice was 8 as:
\[\begin{align}
& P(A|B)=\frac{P(A\cap B)}{P(B)} \\
& P(A|B)=\frac{{}^{3}/{}_{36}}{{}^{5}/{}_{36}} \\
& P(A|B)=\frac{3}{5} \\
\end{align}\]
Therefore, the probability of that the number on the first die was at least as large as 4 given that the sum of the two dice was 8 is 3/5.