Answer
$\sin\theta=\frac{y}{r}=\frac{-3}{3\sqrt 2}=-\frac{\sqrt 2}{2}$
$\cos\theta=\frac{x}{r}=\frac{-3}{3\sqrt 2}=-\frac{\sqrt 2}{2}$
$\csc\theta=\frac{r}{y}=\frac{3\sqrt 2}{-3}=-\sqrt 2$
$\sec\theta=\frac{r}{x}=\frac{3\sqrt 2}{-3}=-\sqrt 2$
$\tan\theta=\frac{y}{x}=\frac{-3}{-3}=1$
$\\theta=\frac{x}{y}=\frac{-3}{-3}=1$
Work Step by Step
x=-3; y=-3
$r=\sqrt {x^{2}+y^{2}}=\sqrt {(-3)^{2}+(-3)^{2}}=\sqrt {18}=3\sqrt 2$