Answer
$\sin180^{\circ}=\frac{y}{r}=\frac{15}{17}$
$\cos180^{\circ}=\frac{x}{r}=\frac{-8}{17}$
$\csc180^{\circ}=\frac{r}{y}=\frac{17}{15}$
$\sec180^{\circ}=\frac{r}{x}=\frac{17}{-8}$
$\tan180^{\circ}=\frac{y}{x}=\frac{15}{-8}$
$\cot180^{\circ}=\frac{x}{y}=\frac{-8}{15}$
Work Step by Step
x=-8; y=15
$r=\sqrt {x^{2}+y^{2}}=\sqrt {(-8)^{2}+(15)^{2}}=\sqrt {289}=17$