Answer
$\sin\theta=\frac{y}{r}=\frac{-2}{\sqrt {85}}=-\frac{2\sqrt {85}}{85}$
$\cos\theta=\frac{x}{r}=\frac{9}{\sqrt {85}}=\frac{9\sqrt {85}}{85}$
$\csc\theta=\frac{r}{y}=\frac{\sqrt {85}}{-2}=-\frac{\sqrt {85}}{2}$
$\sec\theta=\frac{r}{x}=\frac{\sqrt {85}}{9}$
$\tan\theta=\frac{y}{x}=\frac{-2}{9}$
$\cot\theta=\frac{x}{y}=\frac{9}{-2}=-\frac{9}{2}$
Work Step by Step
x=9; y=-2
$r=\sqrt {x^{2}+y^{2}}=\sqrt {(9)^{2}+(-2)^{2}}=\sqrt {85}$