Answer
$\sin\theta=\frac{y}{r}=\frac{-\sqrt 3}{2}$
$\cos\theta=\frac{x}{r}=\frac{1}{2}$
$\csc\theta=\frac{r}{y}=\frac{2}{-\sqrt 3}=-\frac{2\sqrt 3}{3}$
$\sec\theta=\frac{r}{x}=\frac{2}{1}= 2$
$\tan\theta=\frac{y}{x}=\frac{-\sqrt 3}{1}=-\sqrt 3$
$\\cot\theta=\frac{x}{y}=\frac{1}{-\sqrt 3}=-\frac{\sqrt 3}{3}$
Work Step by Step
$y=\sqrt 3; x=1$
$r=\sqrt {x^{2}+y^{2}}=\sqrt {(-\sqrt 3)^{2}+(1)^{2}}=\sqrt {4}=2$