Answer
$\sin\theta=\frac{y}{r}=\frac{2\sqrt 2}{4}=\frac{\sqrt 2}{2}$
$\cos\theta=\frac{x}{r}=\frac{-2\sqrt 2}{4}=-\frac{\sqrt 2}{2}$
$\csc\theta=\frac{r}{y}=\frac{4}{2\sqrt 2}=\sqrt 2$
$\sec\theta=\frac{r}{x}=\frac{4}{-2\sqrt 2}=-\sqrt 2$
$\tan\theta=\frac{y}{x}=\frac{2\sqrt 2}{-2\sqrt 2}=-1$
$\cot\theta=\frac{x}{y}=\frac{-2\sqrt 2}{2\sqrt 2}=-1$
Work Step by Step
$x= -2\sqrt 2; y=2\sqrt 2$
$r=\sqrt {(x)^{2}+(y)^{2}}= \sqrt {(-2\sqrt 2)^{2}+(2\sqrt 2)^{2}}=\sqrt {16}=4$