Answer
$\sin\theta=\frac{y}{r}=\frac{5}{\sqrt {26}}=\frac{5\sqrt {26}}{26}$
$\cos\theta=\frac{x}{r}=\frac{-1}{\sqrt {26}}=-\frac{\sqrt {26}}{26}$
$\csc\theta=\frac{r}{y}=\frac{\sqrt {26}}{5}$
$\sec\theta=\frac{r}{x}=\frac{\sqrt {26}}{-1}=-\sqrt {26}$
$\tan\theta=\frac{y}{x}=\frac{5}{-1}=-5$
$\cot\theta=\frac{x}{y}=\frac{-1}{5}$
Work Step by Step
Using point (-1;5)
$x= -1; y=5$
$r=\sqrt {(x)^{2}+(y)^{2}}= \sqrt {(-1)^{2}+(5)^{2}}=\sqrt {26}=\sqrt {26}$