Answer
$\cot\theta=\frac{\cos\theta}{\sin\theta}$
Work Step by Step
1. Start by taking the reciprocal of both sides of the tangent equation
$(\frac{\sin\theta}{\cos\theta})^{-1}=(\tan\theta)^{-1}$
$\frac{\cos\theta}{\sin\theta}=\frac{1}{\tan\theta}$
2. One over tangent is a cotangent. That it is
$\cot\theta=\frac{\cos\theta}{\sin\theta}$