Answer
$c = 95$ ft
$\angle B = 23.0˚$
$\angle A = 67.0˚$
Work Step by Step
1. Use the Pythagorean Theorem to solve for $c$
$a^{2} + b^{2} = c^{2}$
$37^{2} + 87^{2} = c^{2}$
$8938 = c^{2}$
$c = \sqrt{8938}$
$c = 94.54099...$ ft
$c = 95$ ft
2. Solve for $\angle B$
$tan(B) = \frac{37}{87}$
by GDC / calculator
$\angle B = 23.039...˚$
$\angle B = 23.0˚$
3. Solve for $\angle A$
$90 + (23.039..) + \angle A = 180$
$113.039 + \angle A= 180$
$\angle A = 66.960...˚$
$\angle A = 67.0˚$