Answer
$3\pm 2i$
Work Step by Step
$x^{2}-6x+13=0$
We solve using the quadratic formula ($a=1,\ b=-6,\ c=13$):
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
$x=\frac{-(-6)\pm\sqrt{(-6)^{2}-4(1)(13)}}{2(1)}$
$x=\frac{-(-6)\pm\sqrt{36-52}}{2(1)}$
$x=\frac{+6\pm\sqrt{-16}}{2(1)}$
$x=\frac{6\pm 4i}{2}=3\pm 2i$
Recall, $i=\sqrt{-1}$