Answer
$\displaystyle \frac{3}{13}\pm\frac{2}{13}i$
Work Step by Step
$13x^{2}+1=6x$
$13x^{2}-6x+1=0$
We solve using the quadratic formula ($a=13,\ b=-6,\ c=1$):
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
$x=\frac{-(-6)\pm\sqrt{(-6)^{2}-4(13)(1)}}{2(13)}$
$x=\frac{-(-6)\pm\sqrt{36-52}}{2(13)}$
$x=\frac{+6\pm\sqrt{-16}}{26}$
$x=\frac{6\pm 4i}{26}=\frac{3}{13}\pm\frac{2}{13}i$
Recall, $i=\sqrt{-1}$