College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 1 - Section 1.3 - Complex Numbers; Quadratic Equations in the Complex Number System - 1.3 Assess Your Understanding - Page 112: 88

Answer

$\displaystyle \frac{7}{4}+\frac{1}{4}i$

Work Step by Step

$\displaystyle \frac{1}{Z_{1}}=\frac{1}{2+i}\cdot\frac{2-i}{2-i}=\frac{2-i}{2^{2}+1^{2}}=\frac{2}{5}-\frac{1}{5}i$ $\displaystyle \frac{1}{Z_{2}}=\frac{1}{4-3i}\cdot\frac{4+3i}{4+3i}=\frac{4+3i}{4^{2}+3^{2}} =\frac{4}{25}+\frac{3}{25}i$ $\displaystyle \frac{1}{Z_{1}}+\frac{1}{Z_{2}}=(\frac{2}{5}+\frac{4}{25})+(-\frac{1}{5}+\frac{3}{25})i=\frac{14}{25}-\frac{2}{25}i$ So $\displaystyle \frac{1}{Z}=\frac{14-2i}{25}\Rightarrow Z=\frac{25}{14-2i}$ $Z=\displaystyle \frac{25}{14-2i}\cdot\frac{14+2i}{14+2i}=\frac{25(14+2i)}{14^{2}+2^{2}}=\frac{350+50i}{200}$ $Z=\displaystyle \frac{350}{200}+\frac{50i}{200}=\frac{7}{4}+\frac{1}{4}i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.