Answer
$\displaystyle \frac{\sqrt{2}(\sqrt{7}-2)}{3}=\frac{\sqrt{14}-2\sqrt{2}}{3}$
Work Step by Step
We rationalize the denominator:
$\displaystyle \frac{\sqrt{2}}{\sqrt{7}+2}=\frac{\sqrt{2}(\sqrt{7}-2)}{(\sqrt{7}+2)(\sqrt{7}-2)}=\frac{\sqrt{2}(\sqrt{7}-2)}{7-4}=\frac{\sqrt{2}(\sqrt{7}-2)}{3}=\frac{\sqrt{14}-2\sqrt{2}}{3}$