Answer
$=\frac{x+\sqrt{(x+h)(x-h)}}{h}$
Work Step by Step
$\frac{\sqrt{x+h}+\sqrt{x-h}}{\sqrt{x+h}-\sqrt{x-h}}=\frac{(\sqrt{x+h}+\sqrt{x-h})^2}{(\sqrt{x+h}-\sqrt{x-h})(\sqrt{x+h}+\sqrt{x-h})}=\frac{(x+h)+(x-h)+2\sqrt{(x+h)(x-h}}{(x+h)-(x-h)}=\frac{2x+2\sqrt{(x+h)(x-h}}{2h}=\frac{x+\sqrt{(x+h)(x-h)}}{h}$