College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter R - Section R.8 - nth Roots; Rational Exponents - R.8 Assess Your Understanding - Page 79: 95

Answer

$\frac{4-x}{\sqrt{x+4}(x+4)}$

Work Step by Step

First, re-write to make it in radical form: $\frac{{\sqrt{x+4}}-\frac{2x}{\sqrt{x+4}}}{x+4}$ Then, make both denominators of the top fraction the same: $\frac{\frac{\sqrt{x+4}\cdot\sqrt{x+4}}{\sqrt{x+4}}-\frac{2x}{\sqrt{x+4}}}{x+4}$ Because of the law of radicals $\sqrt[n] a \cdot \sqrt[n] b=\sqrt[n] {ab}$: $\frac{\frac{\sqrt{(x+4)^2}}{\sqrt{x+4}}-\frac{2x}{\sqrt{x+4}}}{x+4}$ Simplify further: $\frac{\frac{x+4-2x}{\sqrt{x+4}}}{x+4}=\frac{4-x}{\sqrt{x+4}}\cdot\frac{1}{x+4}=\frac{4-x}{\sqrt{x+4}(x+4)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.