College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter R - Section R.8 - nth Roots; Rational Exponents - R.8 Assess Your Understanding - Page 79: 99

Answer

$\frac{1-3x^2}{2(1+x^2)^2(\sqrt{x})}$

Work Step by Step

First,, make both denominators of the top fraction the same: $\frac{\frac{1+x^2}{2\sqrt{x}}-\frac{2x\sqrt{x}\cdot2\sqrt{x}}{2\sqrt{x}}}{(1+x^2)^2}$ Because of the law of radicals $\sqrt[n] a \cdot \sqrt[n] b=\sqrt[n] {ab}$: $\frac{\frac{1+x^2}{2\sqrt{x}}-\frac{2x\cdot2\sqrt{x^2}}{2\sqrt{x}}}{(1+x^2)^2}$ Simplify further: $\frac{\frac{1+x^2-4x^2}{2\sqrt{x}}}{(1+x^2)^2}=\frac{1-3x^2}{2\sqrt{x}}\cdot\frac{1}{(1+x^2)^2}=\frac{1-3x^2}{2(1+x^2)^2(\sqrt{x})}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.