College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter R - Section R.8 - nth Roots; Rational Exponents - R.8 Assess Your Understanding - Page 79: 98

Answer

$\frac{4}{(x^2+4)\sqrt{x^2+4}}$

Work Step by Step

First, re-write to make it in radical form: $\frac{\sqrt{x^2+4}-\frac{x^2}{\sqrt{x^2+4}}}{x^2+4}$ Then, make both denominators of the top fractions the same: $\frac{\frac{\sqrt{x^2+4}\cdot\sqrt{x^2+4}}{\sqrt{x^2+4}}-\frac{{x^2}}{\sqrt{x^2+4}}}{x^2+4}$ Because of the law of radicals $\sqrt[n] a \cdot \sqrt[n] b=\sqrt[n] {ab}$: $\frac{\frac{\sqrt{(x^2+4)^2}}{\sqrt{x^2+4}}-\frac{x^2}{\sqrt{x^2+4}}}{x^2+4}$ Simplify further: $\frac{\frac{x^2+4-x^2}{\sqrt{x^2+4}}}{x^2+4}=\frac{4}{\sqrt{x^2+4}}\cdot\frac{1}{x^2+4}=\frac{4}{(x^2+4)\sqrt{x^2+4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.