Answer
$\displaystyle \frac{-2\sqrt[3]{3}}{3}$
Work Step by Step
We rationalize the denominator:
$\displaystyle \frac{-2}{\sqrt[3]{9}}=\frac{-2*\sqrt[3]{9}*\sqrt[3]{9}}{\sqrt[3]{9}*\sqrt[3]{9}*\sqrt[3]{9}}=\frac{-2*\sqrt[3]{81}}{9}=\frac{-2*\sqrt[3]{27*3}}{9}=\frac{-2*3\sqrt[3]{3}}{9}=\frac{-2\sqrt[3]{3}}{3}$