College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Summary, Review, and Test - Review Exercises - Page 91: 118

Answer

$\frac{11x^{2}-x-11}{(2x-1)(x+3)(3x+2)}; x \ne \frac{1}{2}, -3, -\frac{2}{3};$

Work Step by Step

$\frac{4x-1}{2x^{2}+5x-3} - \frac{x+3}{6x^{2}+x-2}$ Factors of $2x^{2}+5x-3$ are $(2x-1)(x+3)$ and factors of $ 6x^{2}+x-2$ are $(2x-1)(3x+2)$ $=\frac{4x-1}{(2x-1)(x+3)} - \frac{x+3}{(2x-1)(3x+2)}$ $=\frac{(4x-1)(3x+2)-(x+3)(x+3)}{(2x-1)(x+3)(3x+2)}; x \ne \frac{1}{2}, -3, -\frac{2}{3};$ $=\frac{12x^{2}-3x+8x-2-[x^{2}+6x+9]}{(2x-1)(x+3)(3x+2)}; x \ne \frac{1}{2}, -3, -\frac{2}{3};$ $=\frac{12x^{2}-3x+8x-2-x^{2}-6x-9}{(2x-1)(x+3)(3x+2)}; x \ne \frac{1}{2}, -3, -\frac{2}{3};$ Combine like terms. $=\frac{11x^{2}-x-11}{(2x-1)(x+3)(3x+2)}; x \ne \frac{1}{2}, -3, -\frac{2}{3};$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.