Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 48

Answer

See below

Work Step by Step

Given: $T(0)=80\\T(3)=100\\T_m=180\\T(t_0)=140$ The temperature of the sandals at time $t$ can be expressed as: $\frac{dT}{dt}=-k(T-180)$ Integrating both sides: $\int \frac{1}{T-180}dT=-\int kdt\\ \rightarrow \ln|T-180|=-kt+c\\ \rightarrow T(t)=c_1e^{-kt}+180$ The initial value condition $T(0)=80$, then $c_1+180=80\\c_1=-100$ Hence, the solution is $T(t)=-100e^{-kt}+180$ Substitute the given condition $T(3)=100$, then: $100=-100e^{-3t}+180\\ \rightarrow e^{-3k}=\frac{80}{100}=\frac{4}{5}\\ \rightarrow -3k=\ln\frac{4}{5}\\ \rightarrow k=-\frac{1}{3}\ln \frac{4}{5}$ Substitute back the result, we have: $140=-100e^{t_0\frac{1}{3}\ln\frac{4}{5}}+180\\ \rightarrow e^{t_0\frac{1}{3}\ln\frac{4}{5}}=\frac{2}{5}\\ \rightarrow t_0\frac{1}{3}\ln\frac{4}{5}= \ln\frac{2}{5}\\ \rightarrow t_0\approx12.319$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.