Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 52

Answer

See below

Work Step by Step

Given: $\frac{dT}{dt}=-k(T-5\cos 2t)$ and $T(0)=0\\\frac{dT}{dt}(0)=5$ a) Find constant $-k(0-5.1)=5\\ \rightarrow k=1$ b) Substitute: $\frac{dT}{dt}=-(T-5\cos 2t)\\ \rightarrow \frac{dT}{dt}+T=5\cos 2t$ Integrating factor could be: $I(x)=e^{\int dt}=e^{t}$ The equation becomes: $ \frac{d}{dt}(Te^{t})=5\cos2te^t$ Integrating both sides: $\rightarrow Te^{t}=\int 5\cos2te^t$ After using an integration by part, we have: $Te^t=e^t(2\sin 2t+\cos 2t)+c \\ \rightarrow T(t)=2\sin 2t+\cos 2t+ce^{-t}$ Find value: $c+0+1=0 \rightarrow c=-1$ Hence, the solution is $T(t)=2\sin 2t+\cos 2t-e^{-t}$ c) For large values of $t$, since $e^{-t} \rightarrow 0, t\rightarrow \infty$, we have: $T(t)=2\sin 2t+\cos 2t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.