Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 53

Answer

See below

Work Step by Step

Given: $\frac{dS}{dt}=-kS$ and $S(T)=500,000\\ S(15)=100,000$ Integrating both sides: $\int \frac{dS}{S}=\int -kdt\\ \rightarrow \ln|S|=-kt+c\\ \rightarrow S(t)=c_1e^{-kt}$ Using $S(0)=500,000$, we find: $c_1=500,000$ The solution $S(t)=500,000e^{-kt}$ Given $t=15$, we have: $100,000=500,000e^{-15k}\\ \rightarrow e^{-15}=\frac{1}{5}\\ \rightarrow -15k=\ln \frac{1}{5}\\ \rightarrow k=\frac{\ln 5}{15}$ Thus, we have the solution $S(t)=500,000e^{-\frac{\ln 5}{15}t}$ a) For $t=35 \rightarrow S(35)=500,000e^{-\frac{\ln 5}{15}35} \approx 11696$ b) For $t=30 \rightarrow S(30)=500,000e^{-\frac{\ln 5}{15}30}=500,000\frac{1}{25}=20,000$ c) With $S(t)=1000 \rightarrow 1000=500,000e^{-\frac{\ln 5}{15}t} \\ \rightarrow e^{-\frac{\ln 5}{15}t}=\frac{1}{500}\\ \rightarrow -\frac{\ln 5}{15}t=\ln \frac{1}{500}\\ \rightarrow t=\frac{15}{\ln 5} \ln 500 \approx 57.92\approx 58$ It is approximately 58 days after April 1.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.