Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 50

Answer

See below

Work Step by Step

According to Nonlinear Law of Cooling, we have: $\frac{dT}{dt}=k(T-T_m)^2\\\rightarrow \frac{dT}{(T-T_m)^2}=kdt$ Integrate both sides: $\int \frac{dT}{(T-T_m)^2}=\int kdt\\ \rightarrow \frac{-1}{T-T_m}=kt+c\\ \rightarrow T(t)=T_m-\frac{1}{kt+c}$ Use the initial-value condition $T(0)=T_0$ to find: $T_0=T_m-\frac{1}{c}\\\rightarrow c=\frac{1}{T_m-T}$ Thus, the solution is: $T(t)=T_m-\frac{1}{kt+\frac{1}{T_m-T}}\\=\frac{T_m kt(T_m-T)+T_m-T_m+T}{kt(T_m-T)+1}\\=\frac{T_mkt(T_m-T)+T}{kt(T_m-T)+1}\\=T_m-\frac{T_m-T}{T_mkt(T_m-T)+T_m-T}$ We can notice that: $T(t) \rightarrow T_m\\ t\rightarrow \infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.